NeuroAnalyzer tutorials: Edit EEG (3)

Load data:

using NeuroAnalyzer
eeg = load("files/eeg.hdf");
e10 = epoch(eeg, ep_len=10);
delete_epoch!(e10, ep=1:10);
[ Info: Loaded: EEG (24 × 308480 × 1; 1204.996 s)

Detect bad channels and epochs:

bads = detect_bad(e10, ch="all", method=[:flat, :p2p, :var])
m[ Info: Using :flat method
[ Info: Using :var method
m[ Info: Using :p2p method
(bm = Bool[0 0 … 0 0; 0 0 … 0 0; … ; 0 1 … 0 0; 1 1 … 1 1],
 be = [3, 4, 5, 6, 19, 26, 27, 32, 52, 53, 63, 98],)

(!) bads will contain matrix of bad channels × epochs (bm) and the list of bad epochs (be).

Detect bad channels and epochs and embed their indices into the object:

detect_bad!(e10, ch="all", method=[:flat, :p2p, :var])
[ Info: Using :flat method
[ Info: Using :var method
[ Info: Using :p2p method

(!) Matrix of bad channels × epochs will be stored in e10.header.recording[:bad_channel].

View bad channels:

plot(e10, ch="eeg", bad=true)

(!) Bad channels are drawn in less intense color. You may also manually mark channels as bad using iview() and right-clicking on the channel label.

(!) Channels marked as bad will be be automatically excluded from analysis if exclude_bads preference is set to true.

Delete bad epochs:

delete_epoch(e10, ep=bads.be)
NeuroAnalyzer.NEURO(NeuroAnalyzer.HEADER(Dict{Symbol, Any}(:weight => -1, :id => "", :middle_name => "", :height => -1, :head_circumference => -1, :handedness => "", :last_name => "528004  SIT 52, 20220831-122227-{d589f756-53fc-4f1b-915d-6e3b8c1560ad}", :first_name => ""), Dict{Symbol, Any}(:epoch_id => "length_10s", :channel_type => ["eeg", "eeg", "eeg", "eeg", "eeg", "eeg", "eeg", "eeg", "eeg", "eeg"  …  "eeg", "eeg", "ref", "ref", "eeg", "eeg", "eeg", "eog", "eog", "ecg"], :label => ["Fp1", "Fp2", "F3", "F4", "C3", "C4", "P3", "P4", "O1", "O2"  …  "T5", "T6", "A1", "A2", "Fz", "Cz", "Pz", "EOG1", "EOG2", "ECG"], :prefiltering => ["HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz"  …  "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz", "HP:0,18Hz LP:104,0Hz"], :gain => [0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218  …  0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218, 0.17935713740749218], :data_type => "eeg", :recording_notes => "", :recording_date => "31.08.22", :sampling_rate => 256, :file_type => "EDF"…), Dict(:name => "", :design => "", :notes => "")), [0.0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.023, 0.027, 0.031, 0.035  …  979.961, 979.965, 979.969, 979.973, 979.977, 979.98, 979.984, 979.988, 979.992, 979.996], [0.0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.023, 0.027, 0.031, 0.035  …  9.961, 9.965, 9.969, 9.973, 9.977, 9.98, 9.984, 9.988, 9.992, 9.996], [9.315577492010473 9.710255079592978 … 3.6098484118018916 3.3350885915928945; -4.885131159323168 -4.295718824127116 … -6.997141548495982 0.8552477531963874; … ; -4.302189205623421 -1.7143484202913308 … 0.2371821950384394 10.065182670100544; -29.085297490503052 -23.917738605254527 … -12.83150878412637 -0.26519178414557487;;; 0.8868960310006226 -1.386322963316335 … 14.788383844581976 14.818490253201384; -4.102771275634588 -0.931871582761957 … -0.06405443531212285 -2.24918592688163; … ; 6.287966413876422 8.370093396816323 … -21.435983232351894 -27.89175925719738; -6.207214998229851 -18.714321657611166 … 300.69932311488435 347.39295377041805;;; 1.055185759157597 -2.132424234737236 … -7.180074917116004 -3.9929442767128425; 2.0295537332828966 -3.339140084116014 … -20.849769952743614 -20.55775570426532; … ; 0.6522509869261448 -6.041197498918361 … -37.62357418052237 -35.408288821308375; 0.33112276499815607 -8.971867687369894 … 7.194845638809034 15.731867440934693;;; … ;;; 18.569309294713733 22.89311361283536 … 4.754504204065761 1.2053936473657352; 4.494714018514111 13.02609030059181 … 5.464449674126968 -2.6002896761179723; … ; -0.20841131938738222 12.507075249278618 … -7.241776899887379 -16.6315533872683; -29.255972440543367 -19.25691477874347 … 51.4201275519938 43.947841516236736;;; -1.4299687612461471 -1.312451759360422 … -0.5864522963548433 -6.796427233556682; 0.012850100616558002 0.570051044210814 … 4.181275800561462 -2.4365803124421292; … ; -6.719338934443345 -5.029725597318926 … 3.433495081847715 -3.6700683194834482; 56.10007507089348 40.45064953005437 … 7.692870188391213 -0.9038428781168477;;; -5.560172661791544 -0.11512766557237253 … 19.084481856614218 16.407156218345452; 5.141449021164782 -3.3199724764366856 … 3.3810434974559325 3.5815380669519286; … ; 3.114487125536476 -6.350212297090032 … 9.640660281430884 10.73198290953739; 9.746916484991555 3.5775514229256995 … -21.665073186614904 -26.318948530205475], Dict{Any, Any}(), 0×5 DataFrame
 Row │ id      start    length   description  channel 
     │ String  Float64  Float64  String       Int64   
─────┴────────────────────────────────────────────────, 23×9 DataFrame
 Row │ label   loc_radius  loc_theta  loc_x    loc_y    loc_z    loc_radius_sp ⋯
     │ String  Float64     Float64    Float64  Float64  Float64  Float64       ⋯
─────┼──────────────────────────────────────────────────────────────────────────
   1 │ Fp1           1.0       108.0    -0.31     0.95    -0.03            1.0 ⋯
   2 │ Fp2           1.0        72.0     0.31     0.95    -0.03            1.0
   3 │ F7            1.0       144.0    -0.81     0.59    -0.03            1.0
   4 │ F3            0.65      129.0    -0.55     0.67     0.5             1.0
   5 │ Fz            0.51       90.0     0.0      0.72     0.7             1.0 ⋯
   6 │ F4            0.65       51.0     0.55     0.67     0.5             1.0
   7 │ F8            1.0        36.0     0.81     0.59    -0.03            1.0
   8 │ T3            1.0       180.0    -1.0      0.0     -0.03            1.0
   9 │ C3            0.51      180.0    -0.72     0.0      0.7             1.0 ⋯
  10 │ Cz            0.0         0.0     0.0      0.0      1.0             1.0
  11 │ C4            0.51        0.0     0.72     0.0      0.7             1.0
  ⋮  │   ⋮         ⋮           ⋮         ⋮        ⋮        ⋮           ⋮       ⋱
  14 │ P3            0.65      231.0    -0.55    -0.67     0.5             1.0
  15 │ Pz            0.51      270.0     0.0     -0.72     0.7             1.0 ⋯
  16 │ P4            0.65      309.0     0.55    -0.67     0.5             1.0
  17 │ T6            1.0       324.0     0.81    -0.59    -0.03            1.0
  18 │ O1            1.0       252.0    -0.31    -0.95    -0.03            1.0
  19 │ O2            1.0       288.0     0.31    -0.95    -0.03            1.0 ⋯
  20 │ A1            1.0       192.0    -0.92    -0.23    -0.55            1.1
  21 │ A2            1.0       -12.0     0.92    -0.23    -0.55            1.1
  22 │ EOG1          1.01      149.0    -0.87     0.51    -0.37            1.0
  23 │ EOG2          1.01       31.0     0.87     0.51    -0.37            1.0 ⋯
                                                    3 columns and 2 rows omitted, ["reset_components(OBJ)", "filter(OBJ, ch=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], fprototype=iirnotch, ftype=nothing, cutoff=50, order=8, rp=-1, rs=-1, dir=twopass, w=nothing)", "reset_components(OBJ)", "filter(OBJ, ch=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], fprototype=fir, ftype=hp, cutoff=0.1, order=8, rp=-1, rs=-1, dir=twopass, w=nothing)", "reset_components(OBJ)", "epoch(OBJ, marker=, offset=0, ep_n=nothing, ep_len=2560)", "reset_components(OBJ)", "delete_epoch(OBJ, [10, 9, 8, 7, 6, 5, 4, 3, 2, 1])", "reset_components(OBJ)", "delete_epoch(OBJ, [98, 63, 53, 52, 32, 27, 26, 19, 6, 5, 4, 3])"])

See detect_bad() for the list of available methods and parameters use to tune auto-detection.

Original signal:

plot(e10, ch="all", ep=1:3)