using NeuroAnalyzer
using Plots
= load("files/eeg.hdf"); eeg
[ Info: Loaded: EEG (24 × 282991 × 1; 1105.43 s)
Load data:
using NeuroAnalyzer
using Plots
= load("files/eeg.hdf"); eeg
[ Info: Loaded: EEG (24 × 282991 × 1; 1105.43 s)
Combine plots:
= NeuroAnalyzer.plot(eeg, ch="Fp1", seg=(5, 7))
p1 = plot_psd(eeg, ch="Fp1", seg=(5, 7))
p2 = plot_spectrogram(eeg, ch="Fp1", seg=(5, 7), frq_lim=(0, 40))
p3 plot_compose([p1, p2, p3], layout=(3, 1), size=(1200, 900))
It is also possible to combine different plots using complex layout:
= NeuroAnalyzer.plot(eeg, ch="Fp1", seg=(5, 7))
p1 = plot_psd(eeg, ch="Fp1", seg=(5, 7), ep=1)
p2 = plot_locs(eeg, ch="eeg", selected="Fp1", large=false)
p3
# @layout macro requires Plots package to be loaded
plot(p1, p2, p3, layout=@layout [a b; _ c _]) Plots.
As an example, a tiled plot of labeled auto-covariance plots will be created.
First, we need data to plot:
= acov(eeg, ch="eeg", l=5)
ac, lags = labels(eeg)[get_channel(eeg, ch="eeg")] l
19-element Vector{String}:
"Fp1"
"Fp2"
"F3"
"F4"
"C3"
"C4"
"P3"
"P4"
"O1"
"O2"
"F7"
"F8"
"T3"
"T4"
"T5"
"T6"
"Fz"
"Cz"
"Pz"
Next, a vector of plots has to be created:
= Plots.Plot{Plots.GRBackend}[]
p for idx in 1:size(ac, 1)
push!(p, plot_xac(ac[idx, :], lags, title=l[idx]))
end
plot!(p...) Plots.