using NeuroAnalyzer
= load("files/eeg.hdf"); eeg
[ Info: Loaded: EEG (24 × 308480 × 1; 1204.996 s)
Load data:
using NeuroAnalyzer
= load("files/eeg.hdf"); eeg
[ Info: Loaded: EEG (24 × 308480 × 1; 1204.996 s)
Plot multi-channel signal:
plot(eeg, ch="all") NeuroAnalyzer.
Plot a time segment 10 to 12.5 second of a single-channel:
plot(eeg, ch="Fp1", seg=(10, 12.5)) NeuroAnalyzer.
Plot multi-channel signal, mean ± 95CI of two channels:
plot(eeg, ch=["F3", "F4"], type=:mean) NeuroAnalyzer.
Butterfly plot multi-channel signal:
plot(eeg, ch=["F3", "F4"], type=:butterfly) NeuroAnalyzer.
You may also compare two signals, e.g. before and after filtering:
= import_edf("files/eeg.edf");
eeg1 = NeuroAnalyzer.filter(eeg1, ch="all", fprototype=:fir, ftype=:lp, cutoff=30)
eeg2 plot(eeg1, eeg2, ch="eeg") NeuroAnalyzer.
[ Info: Imported: EEG (24 × 308480 × 1; 1205.0 s)
[ Info: Signal should be tapered prior to filtering to reduce edge artifacts
[ Info: Creating LP filter:
[ Info: Using default window: hamming(32)
[ Info: Attenuation: 16 dB
[ Info: Transition bandwidth: 0.0293 Hz
[ Info: F_pass: 30.0 Hz
[ Info: F_stop: 37.5 Hz
[ Info: Cutoff frequency: 29.9854 Hz
Progress: 8%|█▋ | ETA: 0:00:43Progress: 100%|████████████████████| Time: 0:00:04