NeuroAnalyzer tutorials: auto/cross-correlation/covariance

Plot auto-covariance:

ac, lags = acov(e10)
p = NeuroAnalyzer.plot_xac(ac[1, :, 1], lags)
plot_save(p, file_name="images/acov.png")

Plot auto-correlation:

ac, lags = acor(e10)
p = NeuroAnalyzer.plot_xac(ac[1, :, 1], lags)
plot_save(p, file_name="images/acor.png")

Plot cross-covariance:

xc, lags = xcov(e10, e10, ch1=1, ch2=2)
p = NeuroAnalyzer.plot_xac(xc[1, :, 1], lags, ylims=(-1, 1), yticks=[-1, 0, 1])
plot_save(p, file_name="images/xcov.png")

Plot cross-correlation:

ac, lags = xcor(e10, e10, ch1=1, ch2=2)
p = NeuroAnalyzer.plot_xac(ac[1, :, 1], lags, ylims=(-1, 1), yticks=[-1, 0, 1])
plot_save(p, file_name="images/xcor.png")